Chapter 8

Calculus

I'm wvery good at integral and differential calculus, I know the sci-
entific names of beings animalculous; In short, in matters vegetable,
animal, and mineral, I am the very model of a modern Major-General.

The Pirates of Penzance. Act 1.

We have looked at limits of sequences, now I want to look at limits of functions.
Suppose we have a function f(x) defined on an interval a < x < b. I have a
sequence X1,X2,- -+ ,Xn which tends to a limit xo. Can I say that the sequence
f(x1), f(x2,...,f(xn) tends to £ and what do I mean? We normally define the limit
as follows:

We say that f(x) — f(xo) as x — xq if for any € > 0 there is a value
0 >0 such that [ x —xo |[< 6 =| f(x) =L |< €

This is in the same spirit as our previous definition for sequences. We can be as
close as we wish to the limiting value £.

For example (x —2)* — 0 as x — 2. If you given me an 0 < € < 1 then if
| x —2 |< & we know | (x —2)* — 0 |< 8% So provided & < e we have a limit as
x — 0!
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In the second case we plot sin (1/x). This starts to oscillate faster and faster as it
approaches zero and ( it is not quite simple to show) does not have a limit.
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8.0.2 Continuity and Differentiability

We did not specify which direction we used to approach the limiting value, from
above or from below. This might be important as in the diagram below where the

f(x)

X — X0

function has a jump at x,.

We like continuous functions, these are functions where f(x) — f(xo) as x — %o
from above and below. You can think of these as functions you can draw without
lifting your pencil off the page. Continuous functions have lots of nice properties.

If we have a continuous function we might reasonably look at the slope of the
curve at any point. This may have a real physical meaning. So suppose we have
the track of a car. We might plot the distance it travels, East say, against time.

If the difference between the distance at times ty and t; is D then D/(t; — to)
gives the approximate speed. This is just the procedure followed by average speed
cameras on roads! However what we have observed is an average speed. If we want
an estimate of speed at a particular time t we need ty and t; to approach t.
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X x + 0x

If we take the times to be t and t+ 0t, where 6t means a small extra bit of t, then
we want

f(t+ 6t) —f(t)
(t+ot—t)
as 0t becomes small or more explicitly
f(t+ 6t) — f(t)
ot

ast— 0

This limit gives the derivative which is the slope of the curve f(t) at the point t

and is written f (t) or

df f(t+8t) —f(t)
I = dm (8.1)

Suppose we take y = f(t) = 3 —4t, a line with constant negative slope. Using the
equation 8.1 we have

df o 3—4(t+0ot)—3+4t 4ot

— = lim = =—4

dx  &t—=0 ot ot
If we now have y = x? — 3 we have, writing x for t
df . (x+x)?—=3—x>+3 X2+ 2xdx+ (8x)2 =3 —x*+3  2xbx + (6x)?
dx  &t—=0 oOx ox ox

So at x=2 the slope is zero while when x is negative the slope is down and then
is upwards when x is greater that zero. You might find it useful to consider the
plot. Note that if we take a point on a curve and draw a straight line whose slope
is f'(x) this line is known as the tangent at x.
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Of course life is too short for working out the derivatives dy/dx like this from first
principles so we tend to use rules ( derived from first principles ).

f
1. i[af(x)] = a— where a is a constant.
dx dx
df dg
2. a[f(x) +g(x)] = I dx
d B dg df
3000 = 00 5 + 90 5
4 d 1. 1 df
Cdxf(x)  f2(x) dx
d n n—1 :
5. a[x ] =nx™" when n # 0 and zero otherwise.
6 dflg(x)) — f'(g(x))g (x) using ’ for the derivative.

Download free eBooks at bookboon.com


http://bookboon.com/

This set of rules makes like very easy, so

i(3x2—11x+59) =3x2x—11
dx

d 1 ox — 11

dx (3x2 — 11x + 59) (3x2 — 11x + 59)2

d%(sxz—nx+59)(x—1) = (6x—11)(x — 1) + (3x2 = 11x + 59)(1)

Example

Suppose we would like to show that sinx < x for 0 < x < 7/2. We know that
when x =0 x =sinx = 0. But

Since cosx < 1 in the interval it implies that sin x grows more slowly than x and
the result follows.

Once we move away from polynomials life gets a little more complex. In reality
you need to know the derivative to be able to proceed so you need a list such as
in table 8.1. Note that the derivative of exp(x) is just exp(x). So for example

Table 8.1: Table of derivatives: all logs are base e and a is a constant

Function | Derivative
exp(ax) aexp(ax)
a® a*log(a)
log(ax) -
X
x* x*(1 + log x)
sin(ax) acos(x)
cos(ax) —asin(x)
tan(ax) a
cos?(x)
2
o If y = exp(—x?) then de%(xx) = exp(—x?)(—2x)
dlog(3x? —4x + 1) ox — 4

o If y =log(3x2 —4x + 1) then ax T B2 —4Ax+1)

It is important to remember that the formulas only work for logarithms to base e
and trigonometric functions, sin, cos etc expressed in radians.
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higher derivatives

d d[du

Since d_y is a function we might wish to differentiate it again to get % called
X X

L . d?y . . . . dy

the second derivative and written o2 If we differentiate 4 times we write o

and in general

ay

=2,3,4,...
an n )3a )

So if y = log(x) we have

dy 1 dy 1 dy 2 dly 6

dx x dx? x2  dx3 x3 dx4 x4

Maxima and minima

One common use for the derivative is to find the maximum or minimum of a
function. It is easy to see that if we have a maximum or minimum of a function
then the derivative is zero. Consider y = %x3 + %xz —6x+ 8

f(x) = 1x3 + %x2—6x—|—8

3
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df
We compute v x? + x — 6 which is zero when x> +x —6 = (x +3)(x —2) =0
or x = —3 and x = 2 and from the plot it we see that we have found the turning
points of the function. These are the local maxima and minima.

=

However when we step back and look at the whole picture it is possible to we

df
have a stationary point i.e. Fvi 0 which is not a turning point and hence we
X

need a local max or minimum rule:
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=2 _0

dx
d—y<0forx<xo d—y>0forx<xo
dx dx
d—y>0forx>xo d—y<0forx>XO
dx dx

X0 1S a minimum | X IS & maximum

d%y
dx?

d%y

0 el
= dx?

<0

d
1. The function f(x) = %Xg’ + %Xz — 6X + 8 has derivative Y2 +x— 6850

at x = 2 we have % = 0. When x < 2 the derivative is negative while when
X > 2 it is positive so we have a minimum.

2
2. Or perhaps simpler d—g =2x+1>0 at x =2 so we have a minimum.
X

3. When x = —3 again $ = 0. For x < —3%¥ > 0 while when x > -3 < 0
implying a maximum.

2
4. Again for simplicity d—g = 2x+1 < 0 at x = —3 hence we have a maximum.
X
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Example

Suppose we make steel cans. If the form of the can is a cylinder of height h and
radius r the volume of the can is V = mr’h and the area of the steel used is
A = 2mrh 4 212,

We want the volume to be 64cc. and hence V = mr’h = 64 which gives
h = 64/(mtr?). The area is therefore A = 2nirh + 27r? = 128 /12 + 2mr?

To minimize the area we compute

% = —128/v% + 4nr

which is zero when 47r3 = 128 giving r ~ 2.17 and h = 64/(nr?) ~ 4.34.
To check that this is a minimum
el 256/1° 4+ 4m

which is positive when r is positive so we have a minimum.

The Taylor Expansion

We leave you with one useful approximation. If we have a function f(x) then we
have

f(x + a) :f(x)—l—ad—f—i—a—Zd—fz-i—...—l—a—nE%—...
dx = 2! dx? n! dxn
When a is small and we evaluate the derivatives at x. For example if we take sin x
the derivatives are cosx, —sinx, —cosx, sinx, .... So at x = 0 since sin0 = 0
and cos0 =1 G o
sm(a):a—g—i—ﬁ—?—

8.0.3 Newton-Raphson method

We now examine a method, known as the Newton-Raphson method, that makes
use of the derivative of the function to find a zero of that function. Suppose we
have reason to believe that there is a zero of f(x) near the pointxgy. The Taylor
expansion for f(x) about xo can be written as:

f(x) = f(xq) + (x — x0)f (x0) + Zl!(x — xéf”(xo) + ...

If we drop the terms of this expansion beyond the first order term we have

f(x) = f(xo) + (x — x0)f (xo)
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Now set f(x) = 0 to find the next approximation, xi, to the zero of f(x), we

find:
f(x1) = f(x0) + (x1 — x0)f (x0) =0

or
flxo)
f'(xo)

This provides us with an iteration scheme which may well converge on the zero
of f(x), under appropriate conditions.

X1 =%Xo—

example

Suppose we want the cube root of 2 or the value of x for which f(x) =x>—2 =0.

Here f'(x) = 3x? so

X1 =Xo— X5 —2
1 — X0 37(%
Starting with xo = 1 we have x; = 1.333333 and using this value for xo we get

x7 = 1.263889. The steps are laid out below

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921

Or suppose f(x) = sinx — cosx then f'(x) = cosx + sinx and so

sin Xg — €Oos Xg
X1=Xo— ———————
COS Xp 1 S Xp

then starting with xo = 1 we have

Step Estimate
1 1
2 0.7820419
3 0.7853982
4 0.7853982
5  0.7853982

To examine the conditions under which this iteration converges, we consider the
iteration function
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whose derivative is:

S — 1 - 02— FOIE ) f00f ()
(F0)2 (F()?

At the actual zero, f(x) = 0, so that as long as f (x) = 0, we have g’ (x) = 0 at
the zero of f(x). In addition we would like the iteration function to get smaller,
that is | g'(x) |< 1. We conclude that the Newton-Raphson method converges in
the interval where.

FOf () _
(f'(x))?

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921
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8.0.4 Integrals and Integration

Many important problems can be reduced to finding the area under a curve between
two points a and b

The obvious idea is to split the area into small rectangles and sum the area of
these. So if we take the rectangle between x; and x;4; this has a height of f(x;)
and an area of f(x;)(xj41 —%;). If we add all such rectangles this gives an gives an
approximation to the area. We do better when the width of the rectangles gets
small so if we choose all the widths as & our approximation is

Zf(Xj)6X for a =x1,%x2,...,Xn=Db

When we shrink 6x to zero we have the area we need and write

Jb f(x)dx

a

The [ sign was originally a capital S, for sum.
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f(x) i '
a X — Xj Xj41 b

We avoid technicalities and define the definite integral of a functionf(x) between
a and b as

Jb f(x)dx

a

which is the area under the curve, see figure 8.1 Using the idea of areas we have

Figure 8.1: Areas under f(x)

some rule for integrals
1. If a < c < b then fzf(x)dx = [ f(x)dx + fl’ f(x)dx
2. For a constant ¢ fz cf(x)dx =c¢ fzf(x)dx

3. For two functions f(x) and g(x) ch (f(x) + g(x)) dx = fz f(x)dx—l—fz g(x)dx
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Perhaps the most important result about integration is the fundamental theorem
of calculus. It is easy to follow, if not to prove. Suppose we have a function f(x)
and we define

Then

dF(x) d /("
I dx (L f(t)dt) = f(x)

In other words integration is rather like the reverse of differentiation. We need to
be a bit careful so define F(x) as the primitive of f(x) if

dF(x)
)
So log x is a primitive for 1/x as is logx 4+ 23. The primitive is normally called the
indefinite integral | f(x)dx of f(x) and is defined up to a constant, so [ f(x)dx =
F(x) 4+ constant
If the limits of the integration exist, say a and b then we have the definite
integral

Jb f(x)dx = F(b) — F(a) (8.2)

We can of course spend time looking at functions which differentiate to what
we want. Normally however we use tables ( or our memory) So

f(x) F(x) = [ f(x)dx
x™ (n#£—1) X/ (n+1)
1/x log x
exp(ax) exp(ax)/a
log x xlogx —x
a* a*/loga
sin(ax) —cos(ax)/a
cos(ax) sin(ax)/a
1/vVaz—x2 | sin'(x/a) (-1 <x < a)
1/(a? —x?) tan—'(x/a)

Example

1. [x?dx =x3/3 + constant

2. [7,x%dx = [x3/3]°, = (3)3/3 — (—2)3/3 = (27 + 8)/3

3. [1°=1/xdx = [logx]}® =log 10 —log 1 =2.30... - 0
4[5 dx/vVT—x2 = [sing (x)]}° = sin~"(1/2) — sin_1(0) = 7/6

Download free eBooks at bookboon.com


http://bookboon.com/

Mathematics for Computer Scientists

Exercises

Calculus

Evaluate the following integrals and check your solutions by differentiating.

1. [x3dx

2. [1/x*dx

3. [(254x%)Tdx
Evaluate

1. f;logxdx

2. LZ x3/2dx

3. fia(az +x2)Tdx
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