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Chapter 8

Calculus

I’m very good at integral and differential calculus, I know the sci-
entific names of beings animalculous; In short, in matters vegetable,
animal, and mineral, I am the very model of a modern Major-General.

The Pirates of Penzance. Act 1.

We have looked at limits of sequences, now I want to look at limits of functions.
Suppose we have a function f(x) defined on an interval a ≤ x ≤ b. I have a
sequence x1, x2, · · · , xn which tends to a limit x0. Can I say that the sequence
f(x1), f(x2, . . . , f(xn) tends to � and what do I mean? We normally define the limit
as follows:

We say that f(x) → f(x0) as x → x0 if for any ε > 0 there is a value
δ > 0 such that | x − x0 |< δ ⇒| f(x) − � |< ε

This is in the same spirit as our previous definition for sequences. We can be as
close as we wish to the limiting value �.

For example (x − 2)4 → 0 as x → 2. If you given me an 0 < ε < 1 then if
| x − 2 |≤ δ we know | (x − 2)4 − 0 |≤ δ4. So provided δ ≤ ε we have a limit as
x → 0!
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In the second case we plot sin (1/x). This starts to oscillate faster and faster as it
approaches zero and ( it is not quite simple to show) does not have a limit.

By 2020, wind could provide one-tenth of our planet’s 
electricity needs. Already today, SKF’s innovative know-
how is crucial to running a large proportion of the 
world’s wind turbines. 

Up to 25 % of the generating costs relate to mainte-
nance. These can be reduced dramatically thanks to our 
systems for on-line condition monitoring and automatic 
lubrication. We help make it more economical to create 
cleaner, cheaper energy out of thin air. 

By sharing our experience, expertise, and creativity, 
industries can boost performance beyond expectations. 

Therefore we need the best employees who can 
meet this challenge!

The Power of Knowledge Engineering

Brain power
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8.0.2 Continuity and Differentiability

We did not specify which direction we used to approach the limiting value, from
above or from below. This might be important as in the diagram below where the

function has a jump at x0.

x0

f(x)

x →

We like continuous functions, these are functions where f(x) → f(x0) as x → x0

from above and below. You can think of these as functions you can draw without
lifting your pencil off the page. Continuous functions have lots of nice properties.

If we have a continuous function we might reasonably look at the slope of the
curve at any point. This may have a real physical meaning. So suppose we have
the track of a car. We might plot the distance it travels, East say, against time.

If the difference between the distance at times t0 and t1 is D then D/(t1 − t0)

gives the approximate speed. This is just the procedure followed by average speed
cameras on roads! However what we have observed is an average speed. If we want
an estimate of speed at a particular time t we need t0 and t1 to approach t.

t0 t1t
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x

y

x + δx

f(x + δx)

f(x)
θ

If we take the times to be t and t+δt, where δt means a small extra bit of t, then
we want

f(t + δt) − f(t)

(t + δt − t)

as δt becomes small or more explicitly

f(t + δt) − f(t)

δt
as t → 0

This limit gives the derivative which is the slope of the curve f(t) at the point t

and is written f
′
(t) or

df

dx
= lim

δt→0

f(t + δt) − f(t)

δt
(8.1)

Suppose we take y = f(t) = 3 − 4t, a line with constant negative slope. Using the
equation 8.1 we have

df

dx
= lim

δt→0

3 − 4(t + δt) − 3 + 4t

δt
=

−4δt

δt
= −4

If we now have y = x2 − 3 we have, writing x for t

df

dx
= lim

δt→0

(x + δx)2 − 3 − x2 + 3

δx
=

x2 + 2xδx + (δx)2 − 3 − x2 + 3

δx
=

2xδx + (δx)2

δx
= 2x+δx = 2x

So at x=2 the slope is zero while when x is negative the slope is down and then
is upwards when x is greater that zero. You might find it useful to consider the
plot. Note that if we take a point on a curve and draw a straight line whose slope
is f

′
(x) this line is known as the tangent at x.
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Of course life is too short for working out the derivatives dy/dx like this from first
principles so we tend to use rules ( derived from first principles ).

1.
d

dx
[af(x)] = a

df

dx
where a is a constant.

2.
d

dx
[f(x) + g(x)] =

df

dx

dg

dx

3.
d

dx
[f(x)g(x)] = f(x)

dg

dx
+ g(x)

df

dx

4.
d

dx

1

f(x)
= −

1

f2(x)

df

dx

5.
d

dx
[xn] = nxn−1 when n �= 0 and zero otherwise.

6.
df(g(x))

dx
= f

′
(g(x))g

′
(x) using ′ for the derivative.

http://bookboon.com/


Download free eBooks at bookboon.com

Mathematics for Computer Scientists

88 

Calculus
92 CHAPTER 8. CALCULUS

This set of rules makes like very easy, so

d

dx
(3x2 − 11x + 59) = 3 × 2x − 11

d

dx

1

(3x2 − 11x + 59)
= −

6x − 11

(3x2 − 11x + 59)2

d

dx
(3x2 − 11x + 59)(x − 1) = (6x − 11)(x − 1) + (3x2 − 11x + 59)(1)

Example

Suppose we would like to show that sin x ≤ x for 0 ≤ x ≤ π/2. We know that
when x = 0 x = sin x = 0. But

dx

dx
= 1 and

d sin x

dx
= cos x

Since cos x ≤ 1 in the interval it implies that sin x grows more slowly than x and
the result follows.

Once we move away from polynomials life gets a little more complex. In reality
you need to know the derivative to be able to proceed so you need a list such as
in table 8.1. Note that the derivative of exp(x) is just exp(x). So for example

Table 8.1: Table of derivatives: all logs are base e and a is a constant

Function Derivative
exp(ax) a exp(ax)

ax ax log(a)

log(ax)
1

x
xx xx(1 + log x)

sin(ax) a cos(x)

cos(ax) −a sin(x)

tan(ax)
a

cos2(x)

• If y = exp(−x2) then
d exp(−x2)

dx
= exp(−x2)(−2x)

• If y = log(3x2 − 4x + 1) then
d log(3x2 − 4x + 1)

dx
=

6x − 4

(3x2 − 4x + 1)

It is important to remember that the formulas only work for logarithms to base e

and trigonometric functions, sin, cos etc expressed in radians.
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higher derivatives

Since
dy

dx
is a function we might wish to differentiate it again to get

d
[

dy
dx

]
dx

called

the second derivative and written
d2y

dx2
. If we differentiate 4 times we write

d4y

dx4

and in general

dny

dxn
n = 2, 3, 4, . . .

So if y = log(x) we have

dy

dx
=

1

x

d2y

dx2
= −

1

x2

d3y

dx3
=

2

x3

d4y

dx4
= −

6

x4
. . .

Maxima and minima

One common use for the derivative is to find the maximum or minimum of a
function. It is easy to see that if we have a maximum or minimum of a function
then the derivative is zero. Consider y = 1

3
x3 + 1

2
x2 − 6x + 8

�

�

2 4-2-4
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20

30

40

-10

-20

-30

f(x) = 1
3
x3 + 1

2
x2 − 6x + 8

We compute
df

dx
= x2 + x − 6 which is zero when x2 + x − 6 = (x + 3)(x − 2) = 0

or x = −3 and x = 2 and from the plot it we see that we have found the turning
points of the function. These are the local maxima and minima.

However when we step back and look at the whole picture it is possible to we

have a stationary point i.e.
df

dx
= 0 which is not a turning point and hence we

need a local max or minimum rule:
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dy

dx
= 0

dy

dx
< 0 for x < x0

dy

dx
> 0 for x < x0

dy

dx
> 0 for x > x0

dy

dx
< 0 for x > x0

x0 is a minimum x0 is a maximum

d2y

dx2
> 0

d2y

dx2
< 0

1. The function f(x) = 1
3
x3 + 1

2
x2 − 6x + 8 has derivative

dy

dx
= x2 + x − 6 so

at x = 2 we have dy
dx

= 0. When x < 2 the derivative is negative while when
x > 2 it is positive so we have a minimum.

2. Or perhaps simpler
d2y

dx2
= 2x + 1 > 0 at x = 2 so we have a minimum.

3. When x = −3 again dy
dx

= 0. For x < −3dy
dx

> 0 while when x > −3dy
dx

< 0

implying a maximum.

4. Again for simplicity
d2y

dx2
= 2x+1 < 0 at x = −3 hence we have a maximum.
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Example

Suppose we make steel cans. If the form of the can is a cylinder of height h and
radius r the volume of the can is V = πr2h and the area of the steel used is
A = 2πrh + 2πr2.

We want the volume to be 64cc. and hence V = πr2h = 64 which gives
h = 64/(πr2). The area is therefore A = 2πrh + 2πr2 = 128/r2 + 2πr2

To minimize the area we compute

dA

dr
= −128/r2 + 4πr

which is zero when 4πr3 = 128 giving r � 2.17 and h = 64/(πr2) � 4.34.

To check that this is a minimum

d2A

dr2
= 256/r3 + 4π

which is positive when r is positive so we have a minimum.

The Taylor Expansion

We leave you with one useful approximation. If we have a function f(x) then we
have

f(x + a) = f(x) + a
df

dx
+

a2

2!

df2

dx2
+ . . . +

an

n!

dfn

dxn
+ . . .

When a is small and we evaluate the derivatives at x. For example if we take sin x

the derivatives are cos x, −sinx, −cosx, sinx, . . . . So at x = 0 since sin 0 = 0

and cos 0 = 1

sin(a) = a −
a3

3!
+

a5

5!
−

a7

7!
− . . .

8.0.3 Newton-Raphson method

We now examine a method, known as the Newton-Raphson method, that makes
use of the derivative of the function to find a zero of that function. Suppose we
have reason to believe that there is a zero of f(x) near the pointx0. The Taylor
expansion for f(x) about x0 can be written as:

f(x) = f(x0) + (x − x0)f
′
(x0) +

1

2!
(x − x2

0f
′′
(x0) + . . .

If we drop the terms of this expansion beyond the first order term we have

f(x) = f(x0) + (x − x0)f
′
(x0)
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Now set f(x) = 0 to find the next approximation, x1, to the zero of f(x), we
find:

f(x1) = f(x0) + (x1 − x0)f
′
(x0) = 0

or

x1 = x0 −
f(x0)

f
′(x0)

This provides us with an iteration scheme which may well converge on the zero
of f(x), under appropriate conditions.

example

Suppose we want the cube root of 2 or the value of x for which f(x) = x3 − 2 = 0.
Here f

′
(x) = 3x2 so

x1 = x0 −
x3

0 − 2

3x2
0

Starting with x0 = 1 we have x1 = 1.333333 and using this value for x0 we get
x1 = 1.263889. The steps are laid out below

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921

Or suppose f(x) = sin x − cos x then f
′
(x) = cos x + sin x and so

x1 = x0 −
sin x0 − cos x0

cos x0 + sin x0

then starting with x0 = 1 we have

Step Estimate
1 1
2 0.7820419
3 0.7853982
4 0.7853982
5 0.7853982

To examine the conditions under which this iteration converges, we consider the
iteration function

g(x) = x −
f(x)

f
′(x)
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whose derivative is:

g
′
(x) = 1 −

(f
′
(x))2 − f(x)f

′′
(x)

(f ′(x))2
=

f(x)f
′′
(x)

(f ′(x))2

At the actual zero, f(x) = 0, so that as long as f
′
(x) = 0, we have g

′
(x) = 0 at

the zero of f(x). In addition we would like the iteration function to get smaller,
that is | g

′
(x) |< 1. We conclude that the Newton-Raphson method converges in

the interval where.
f(x)f

′′
(x)

(f ′(x))2
< 1

Step Estimate
0 1
1 1.333333
2 1.263889
3 1.259933
4 1.259921
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8.0.4 Integrals and Integration

Many important problems can be reduced to finding the area under a curve between
two points a and b

a bx →

f(x)

The obvious idea is to split the area into small rectangles and sum the area of
these. So if we take the rectangle between xj and xj+1 this has a height of f(xj)

and an area of f(xj)(xj+1 − xj). If we add all such rectangles this gives an gives an
approximation to the area. We do better when the width of the rectangles gets
small so if we choose all the widths as δ our approximation is

∑
f(xj)δx for a = x1, x2, . . . , xn = b

When we shrink δx to zero we have the area we need and write

∫b

a

f(x)dx

The
∫

sign was originally a capital S, for sum.
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a bx →

f(x)

xj xj+1

f(xj)

We avoid technicalities and define the definite integral of a functionf(x) between
a and b as ∫b

a

f(x)dx

which is the area under the curve, see figure 8.1 Using the idea of areas we have

Figure 8.1: Areas under f(x)

some rule for integrals

1. If a ≤ c ≤ b then
∫b

a
f(x)dx =

∫c

a
f(x)dx +

∫b

c
f(x)dx

2. For a constant c
∫b

a
cf(x)dx = c

∫b

a
f(x)dx

3. For two functions f(x) and g(x)
∫b

a
c (f(x) + g(x))dx =

∫b

a
f(x)dx+

∫b

a
g(x)dx
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Perhaps the most important result about integration is the fundamental theorem
of calculus. It is easy to follow, if not to prove. Suppose we have a function f(x)

and we define

F(x) =

∫x

a

f(t)dt

Then
dF(x)

dx
=

d

dx

(∫x

a

f(t)dt

)
= f(x)

In other words integration is rather like the reverse of differentiation. We need to
be a bit careful so define F(x) as the primitive of f(x) if

dF(x)

dx
= f(x)

So log x is a primitive for 1/x as is log x+ 23. The primitive is normally called the
indefinite integral

∫
f(x)dx of f(x) and is defined up to a constant, so

∫
f(x)dx =

F(x) + constant

If the limits of the integration exist, say a and b then we have the definite
integral ∫b

a

f(x)dx = F(b) − F(a) (8.2)

We can of course spend time looking at functions which differentiate to what
we want. Normally however we use tables ( or our memory) So

f(x) F(x) =
∫

f(x)dx

xn (n �= −1) xn/(n + 1)

1/x log x

exp(ax) exp(ax)/a

log x x log x − x

ax ax/ log a

sin(ax) −cos(ax)/a

cos(ax) sin(ax)/a

1/
√

a2 − x2 sin−1(x/a) (−1 < x < a)

1/(a2 − x2) tan−1(x/a)

Example

1.
∫

x2dx = x3/3 + constant

2.
∫3

−2
x2dx =

[
x3/3

]3

−2
= (3)3/3 − (−2)3/3 = (27 + 8)/3

3.
∫10

1
= 1/xdx = [log x]

10
1 = log 10 − log 1 = 2.30 . . . − 0

4.
∫1/2

0
dx/

√
1 − x2 = [sin1(x)]

10
1 = sin−1(1/2) − sin−1(0) = π/6
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Exercises

Evaluate the following integrals and check your solutions by differentiating.

1.
∫

x3dx

2.
∫

1/x2dx

3.
∫
(25 + x2)−1dx

Evaluate

1.
∫7

3
log xdx

2.
∫2

1
x−3/2dx

3.
∫2a

a
(a2 + x2)−1dx
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